24 research outputs found

    Routing Protocols

    Full text link
    Wireless sensor are scarce resource so therefore Various Algorithms are there which are described in this paper.This paper contains algorithms which are location based ,hierarchical, data centric etc

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Efficient Routing in Wireless Sensor Networks

    Full text link
    Wireless Sensors requires energy for communication,sensing and processing. Mechanisms are discovered to reduce the communication between the sensors .Multicasting in Wireless Network is the technique where there is one sender and multiple receivers. That means there is no need of broadcasting . But my proposed model is using mulicasting and it also uses the inherent broadcastingnbsp property of Wireless links.This modelnbsp is based on demand basednbsp protocol strategynbsp where the initiation for receiving the datanbsp starts from the destination.This model assumes that a unique id is given to all the sensors. Another assumption in my model is that there are multiple receivers and only one source node. Each receiver is using a different session for searching and receiving information from the source node.Sink node which hasnbsp interest in receivingnbsp data fromnbsp source will broadcast a search message and then nodes in the communication range of sink will supply a feedback message which contains thenbsp id of sensor node sending the feedbacknbsp message. After this step selection of path or reservation will take place.Path selection is done according to the id of the source node. An id of sensor node is selected which is nearest to the source node id. Along with this an entry is made in the sensor node whose id is selected.Thisnbsp is achieved by utilizing the feedbacks send by sensornbsp nodes.According to my model, reservation means that when a sensor node finds some already present entry in some other sensor node, And if that entry belongs to some other receiver then sensor node will make an entry in other sensor node so that when the information is transmitted from the source node to other receiver then it will be received by the sensor node which has done its registration. Registrations are performed so that only least number of sessions related to other receivers will be active and less number of nodes to be used while sending datanbsp from the source node. Simulation showed less number of nodes are used while the information is coming from source node

    Distance from Skin to Epidural Space: Correlation with Body Mass Index (BMI)

    No full text
    Background: Epidural anaesthesia is being increasingly used to provide anaesthesia for surgery on the lower abdomen, perineum and lower extremities. However success of the epidural technique depends upon the correct identification of epidural space. [2] We conducted a study to find the distance from skin to the epidural space and its correlation with body mass index, to improve the success rate. Patient and Methods: 120 adults patients belonging to ASA physical status I and II in the age group of 18-70 years, scheduled for surgery and or pain relief under epidural block, were taken up for the study. 60 patients of either sex were further subdivided into 2 subgroups of 30 patients each having BMI less than 30 or more than 30. The distance from skin to epidural space was measured as the distance between rubber marker and tip of Tuohy′s needle. Results: It was found that with increase in Body mass Index, the distance from skin to the epidural space also increases. The distance from the skin to the epidural space does not depend on the age or the sex of the patients. Conclusions: We formulated predictive equation of depth of epidural space from skin in relation to BMI based on linear regression analysis as: Depth (mm) = a + b (BMI). Where a = 17.7966 and b = 0.9777

    A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort

    No full text
    Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41\ub15.12%, 0.991 (p<0.0001), and 99.41\ub10.62%, 0.988 (p<0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p<0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated

    Inter-Variability Study of COVLIAS 1.0 : Hybrid Deep Learning Models for COVID-19 Lung Segmentation in Computed Tomography

    No full text
    Background: For COVID-19 lung severity, segmentation of lungs on computed tomography (CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have a bias in the training stage of segmentation because only one set of ground truth (GT) annotations are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are trained on the GT tracings from multiple experience levels, and if the AI performance on the test data between these AI models is within the 5% range, one can consider such an AI model robust and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics were used for performance evaluation. Results: The database consisted of 5000 CT chest images from 72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output of the two AI models trained corresponding to the two GT tracers, computing their differences in their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%, and 2.04% (all PSP Net > VGG-SegNet. Conclusions: The AI models were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on COVID-19 patients

    COVLIAS 1.0 : Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models

    No full text
    COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation.The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT.Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image.The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings
    corecore